Matemática

Matemática
5.º Ano
2.º Ciclo
Ensino Básico
Introdução

Finalidades do ensino da Matemática

Respeitando os princípios de equidade e qualidade, o ensino da Matemática, ao nível da escolaridade básica, deve visar aprendizagens matemáticas relevantes e sustentáveis para todos os alunos. Neste sentido, privilegia-se uma aprendizagem da Matemática com compreensão, bem como o desenvolvimento da capacidade de os alunos em utilizá-la em contextos matemáticos e não matemáticos ao longo da escolaridade, e nos diversos domínios disciplinares, por forma a contribuir não só para a sua autorrealização enquanto estudantes, como também na sua vida futura pessoal, profissional e social.

Na escolaridade básica, o ensino da Matemática deve, pois, proporcionar uma formação na disciplina centrada na aprendizagem que contribua para o desenvolvimento pessoal do aluno e lhe propicie a apropriação de instrumentos conceptuais e técnicos necessários na aprendizagem de outras disciplinas ao longo do seu percurso académico, qualquer que seja a área de prosseguimento de estudos escolhida. Deve contribuir igualmente para a atividade profissional por que venha a optar e para o exercício de uma cidadania crítica e participação na sociedade, com sentido de autonomia e colaboração, liberdade e responsabilidade.

O ensino da Matemática neste nível deve ainda proporcionar uma formação que promova nos alunos uma relação positiva com a disciplina, bem como uma visão da Matemática que corresponda à sua natureza enquanto ciência e integre o reconhecimento do seu valor cultural e social, nomeadamente no que se refere ao seu papel no desenvolvimento das diversas ciências, da tecnologia e de outras áreas da atividade humana.

Assim, na escolaridade básica, o ensino da Matemática deve ser norteado pelas seguintes finalidades principais:

a) Promover a aquisição e desenvolvimento de conhecimento e experiência em Matemática e a capacidade da sua aplicação em contextos matemáticos e não matemáticos.

Com esta finalidade pretende-se que, ao longo da escolaridade básica, os alunos compreendam os procedimentos, técnicas, conceitos, propriedades e relações matemáticas, e desenvolvam a capacidade de os utilizar para analisar, interpretar e resolver situações em contextos variados; desenvolvam capacidade de abstração e generalização e de compreender e elaborar raciocínios lógicos e outras formas de argumentação matemática; desenvolvam a capacidade de resolver e formular problemas, incluindo os que envolvem áreas matemáticas diferentes e problemas de modelação matemática; adquiram o vocabulário e linguagem próprios da Matemática e desenvolvam a capacidade de comunicar em Matemática, por forma a serem capazes de descrever, explicar e justificar, oralmente e por escrito, as suas ideias, procedimentos e raciocínios, bem como os resultados e conclusões que obtêm.

b) Desenvolver atitudes positivas face à Matemática e a capacidade de reconhecer e valorizar o papel cultural e
social desta ciência.

Com esta finalidade pretende-se que, ao longo da escolaridade básica, os alunos desenvolvam interesse pela Matemática e confiança nos seus conhecimentos e capacidades matemáticas, bem como persistência, autonomia e à-vontade em lidar com situações que envolvam Matemática no seu percurso académico e que venham a enfrentar na sua vida em sociedade; desenvolvam a capacidade de apreciar aspetos estéticos da Matemática e de reconhecer e valorizar o papel da Matemática no desenvolvimento das outras ciências, da tecnologia e de outros domínios da atividade humana; desenvolvam a capacidade de reconhecer e valorizar a Matemática como elemento do património cultural da humanidade.

Estas finalidades enquadram, fundamentam e dão um sentido global às Aprendizagens Essenciais (AE) para cada tema matemático em cada um dos três ciclos do ensino básico, sendo entendidas como “os conteúdos de conhecimento disciplinar estruturado, indispensáveis, articulados conceptualmente, relevantes e significativos, bem como de capacidades e atitudes a desenvolver obrigatoriamente por todos os alunos em cada área disciplinar ou disciplina” (Decreto-Lei n.º 55/2018, de 6 de julho). As AE apresentadas constituem, para cada tema matemático, um todo integrado e articulado de conteúdos, objetivos e práticas de aprendizagem interrelacionados e indissociáveis. Os objetivos concretizam as aprendizagens essenciais relativas a cada conteúdo, incidindo sobre conhecimentos, capacidades e atitudes a adquirir e a desenvolver, e as práticas estabelecem condições que apoiam e favorecem a consecução desses objetivos.

Assim, a aquisição e desenvolvimento de conhecimentos, capacidades e atitudes, e a sua aplicação em contextos matemáticos e não matemáticos, são objetivos essenciais de aprendizagem, associados aos conteúdos de aprendizagem de cada tema matemático — sendo que os que estão definidos em termos de capacidades e as atitudes expressam também um vínculo próximo com a Matemática — e a práticas de aprendizagem que visam proporcionar condições que apoiem e favoreçam aprendizagens sustentáveis, com compreensão e transferíveis ou aplicáveis em contextos matemáticos e não matemáticos.

Articulação com o 1.º Ciclo

No que se refere aos temas e conteúdos de aprendizagem, a ação do professor no 2.º ciclo deve ser orientada por forma a que, relativamente a:

  • Números e Operações

Os alunos prossigam no desenvolvimento do sentido de número e da compreensão dos números e das operações, bem como da fluência do cálculo mental e escrito.

Neste ciclo, aprofunda-se o estudo dos números racionais não negativos na representação decimal e na forma de fração, introduzindo-se a representação em percentagem e o numeral misto, e alarga-se o estudo aos números inteiros.

  • Geometria e Medida

Os alunos prossigam no desenvolvimento da capacidade de visualização e na compreensão de propriedades de figuras geométricas, alargando-se o estudo de sólidos geométricos e de figuras planas e o estudo das grandezas geométricas e das isometrias do plano.

Neste ciclo, o perímetro é trabalhado com outras figuras geométricas, como o círculo e polígonos irregulares, e é introduzido o estudo das fórmulas para o cálculo de áreas e volumes — do triângulo e do círculo, e dos prismas retos e do cilindro, respetivamente. Nas isometrias dá-se especial atenção à reflexão e à rotação.

  • Álgebra

Os alunos desenvolvam o pensamento algébrico, bem como a capacidade de representar simbolicamente situações matemáticas e não matemáticas.

Neste ciclo, aprofunda-se o estudo das propriedades das operações e a sua generalização, bem como o uso da linguagem simbólica para descrever e representar relações matemáticas. São introduzidas as expressões numéricas para traduzir matematicamente uma dada situação e estudadas sequências e regularidades com a determinação de leis de formação e, se pertinente, de expressões algébricas que as representam. É também introduzida a noção de proporcionalidade direta, bem como os conceitos de razão e proporção associados.

  • Organização e Tratamento de Dados

Os alunos prossigam no desenvolvimento da capacidade de compreender e de produzir informação estatística.

Neste ciclo, prossegue a exploração, análise e interpretação de informação de natureza estatística e a realização de estudos que envolvam a linguagem e procedimentos estatísticos. Alarga-se o estudo a variáveis contínuas e a representações gráficas de dados com os gráficos de linhas e circulares, e introduzem-se a noção de frequência relativa e as medidas estatísticas — média, moda e amplitude.

  • Resolução de problemas, Raciocínio e Comunicação

Os alunos desenvolvam a capacidade de resolver problemas em situações que convocam a mobilização das novas aprendizagens nos diversos domínios, e a análise de estratégias e dos resultados obtidos.

Os alunos desenvolvam a capacidade de raciocinar e de argumentar matematicamente, formulando e testando conjecturas, bem como a capacidade de analisar os argumentos de outros.

Os alunos desenvolvam a capacidade de comunicarem em matemática, oralmente e por escrito, e progridam na utilização da linguagem matemática própria dos diversos conteúdos estudados na expressão e discussão das suas ideias, procedimentos e raciocínios.

Articulação com o Perfil dos Alunos à Saída da Escolaridade Obrigatória (PA)

As AE apresentadas articulam-se com o PA, tendo em vista a sua consecução, no âmbito da disciplina de Matemática, nomeadamente no que se refere às aprendizagens dos alunos associadas às áreas de competências aí definidas, quer nas áreas (a), (b), (c), (d), e (i), intrinsecamente relacionados com temas, processos e métodos matemáticos, quer nas restantes áreas, (e), (f), (g), (h) e (j), em que a Matemática dá igualmente contributos essenciais. Num caso e noutro, pressupõem práticas de trabalho autónomo, colaborativo e de carácter interdisciplinar.

Áreas de Competências do perfil dos Alunos (ACPA)
Linguagens e Textos
Informação e comunicação
Raciocínio e resolução de problemas
Pensamento crítico e pensamento criativo
Relacionamento interpessoal
Desenvolvimento pessoal e autonomia
Bem-estar, saúde e ambiente
Sensibilidade estética e artística
Saber científico, técnico e tecnológico
Consciência e domínio do corpo
Operacionalização das Aprendizagens Essenciais (AE)
Organizador
NÚMEROS E OPRERAÇÕES
Conhecimentos, Capacidades e Atitudes

Números naturais

Números racionais não negativos

Resolução de problemas

Raciocínio matemático

Comunicação matemática

 

  • Identificar números primos e números compostos e decompor um número em fatores primos.
  • Reconhecer múltiplos e divisores de números naturais, dar exemplos e utilizar as noções de mínimo múltiplo comum e máximo divisor comum na resolução de problemas em contextos matemáticos e não matemáticos.
  • Representar números racionais não negativos na forma de fração, decimal e percentagem, e estabelecer relações entre as diferentes representações, incluindo o numeral misto.
  • Comparar e ordenar números racionais não negativos, em contextos diversos, com e sem recurso à reta numérica.
  • Reconhecer relações numéricas e propriedades dos números e das operações, e utilizá-las em diferentes contextos, analisando o efeito das operações sobre os números.
  • Adicionar e subtrair números racionais não negativos nas diversas representações, recorrendo ao cálculo mental e a algoritmos, e fazer estimativas plausíveis.
  • Conceber e aplicar estratégias na resolução de problemas em contextos matemáticos e não matemáticos e avaliar a plausibilidade dos resultados.
  • Compreender e construir explicações e justificações matemáticas, incluindo o recurso a exemplos e contraexemplos.
  • Exprimir, oralmente e por escrito, ideias matemáticas, com precisão e rigor, e justificar raciocínios, procedimentos e conclusões, recorrendo ao vocabulário e linguagem próprios da matemática (convenções, notações, terminologia e simbologia).
  • Desenvolver interesse pela Matemática e valorizar o seu papel no desenvolvimento das outras ciências e domínios da atividade humana e social.
  • Desenvolver confiança nas suas capacidades e conhecimentos matemáticos, e a capacidade de analisar o próprio trabalho e regular a sua aprendizagem.
  • Desenvolver persistência, autonomia e à-vontade em lidar com situações que envolvam a Matemática no seu percurso escolar e na vida em sociedade.

 

Ações estratégicas de ensino orientadas para o perfil dos alunos
  • Explorar, analisar e interpretar situações de contextos variados que favoreçam e apoiem uma aprendizagem matemática com sentido (dos conceitos, propriedades, operações e procedimentos matemáticos).
  • Realizar tarefas de natureza diversificada (projetos, explorações, investigações, resolução de problemas, exercícios, jogos).
  • Utilizar materiais manipuláveis e outros recursos, incluindo os de tecnologia digital e a calculadora, na resolução de problemas e em outras tarefas de aprendizagem.
  • Utilizar números racionais não negativos com o significado de parte-todo, quociente, medida e operador, em contextos matemáticos e não matemáticos.
  • Utilizar as relações numéricas e as propriedades das operações e dos números, incluindo os critérios de divisibilidade (2,3,4,5,9 e 10), em situações de cálculo mental e escrito.
  • Reconhecer relações entre as ideias matemáticas no campo numérico e aplicar essas ideias em outros domínios matemáticos e não matemáticos.
  • Resolver problemas que requeiram a aplicação de conhecimentos já aprendidos e apoiem a aprendizagem de novos conhecimentos.
  • Resolver e formular problemas, analisar estratégias variadas de resolução e apreciar os resultados obtidos.
  • Abstrair e generalizar, e de reconhecer e elaborar raciocínios, discutindo e criticando explicações e justificações de outros.
  • Comunicar utilizando linguagem matemática, oralmente e por escrito, para descrever e justificar raciocínios, procedimentos e conclusões.
  • Analisar o próprio trabalho para identificar progressos, lacunas e dificuldades na sua aprendizagem.
Descritores do Perfil dos alunos

Conhecedor/ sabedor/ culto/ informado (A, B, G, I, J)

Criativo (A, C, D, J)

Crítico/Analítico (A, B, C, D, G)

Indagador/ Investigador (C, D, F, H, I)

Respeitador da diferença/ do outro (A, B, E, F, H)

Sistematizador/ organizador (A, B, C, I, J)

Questionador (A, F, G, I, J)

Comunicador / Desenvolvimento da linguagem e da oralidade (A, B, D, E, H)

Autoavaliador (transversal às áreas)

Participativo/ colaborador (B, C, D, E, F)

Responsável/ autónomo (C, D, E, F, G, I, J)

Cuidador de si e do outro (B, E, F, G)

Organizador
GEOMETRIA E MEDIDA
Conhecimentos, Capacidades e Atitudes

Figuras planas e sólidos geométricos

Medida

Resolução de problemas

Raciocínio matemático

Comunicação matemática

  • Descrever figuras no plano e no espaço com base nas suas propriedades e nas relações entre os seus elementos e fazer classificações explicitando os critérios utilizados.
  • Identificar e desenhar planificações de sólidos geométricos e reconhecer um sólido a partir da sua planificação.
  • Exprimir a amplitude de um ângulo em graus e identificar ângulos complementares, suplementares, adjacentes, alternos internos e verticalmente opostos.
  • Utilizar os critérios de igualdade de triângulos na sua construção e na resolução de problemas em contextos matemáticos e não matemáticos.
  • Reconhecer casos de possibilidade de construção de triângulos e construir triângulos a partir de elementos dados (amplitude de ângulos, comprimento de lados).
  • Reconhecer o significado de fórmulas para o cálculo de perímetros e áreas de paralelogramos e triângulos, e usá-las na resolução de problemas em contextos matemáticos e não matemáticos.
  • Calcular perímetros e áreas de polígonos, por enquadramento ou por decomposição e composição de figuras planas.
  • Descrever figuras no plano e no espaço com base nas suas propriedades e nas relações entre os seus elementos e fazer classificações explicitando os critérios utilizados.
  • Identificar e desenhar planificações de sólidos geométricos e reconhecer um sólido a partir da sua planificação.
  • Exprimir a amplitude de um ângulo em graus e identificar ângulos complementares, suplementares, adjacentes, alternos internos e verticalmente opostos.
  • Utilizar os critérios de igualdade de triângulos na sua construção e na resolução de problemas em contextos matemáticos e não matemáticos.
  • Reconhecer casos de possibilidade de construção de triângulos e construir triângulos a partir de elementos dados (amplitude de ângulos, comprimento de lados).
  • Reconhecer o significado de fórmulas para o cálculo de perímetros e áreas de paralelogramos e triângulos, e usá-las na resolução de problemas em contextos matemáticos e não matemáticos.
  • Calcular perímetros e áreas de polígonos, por enquadramento ou por decomposição e composição de figuras planas.

 

Ações estratégicas de ensino orientadas para o perfil dos alunos
  • Explorar, analisar e interpretar situações de contextos variados, numa abordagem do espaço ao plano, que favoreçam e apoiem uma aprendizagem matemática com sentido (dos conceitos, propriedades, operações e procedimentos matemáticos).
  • Realizar tarefas de natureza diversificada (projetos, explorações, investigações, resolução de problemas, exercícios, jogos).
  • Utilizar modelos geométricos e outros materiais manipuláveis, e instrumentos variados, incluindo os de tecnologia digital, nomeadamente aplicações interactivas, programas computacionais específicos e calculadora, na exploração de propriedades de figuras planas e de sólidos geométricos.
  • Utilizar instrumentos de medida e desenho (régua, compasso, esquadro e transferidor) na construção de objetos geométricos.
  • Visualizar, interpretar e desenhar representações de figuras geométricas e construir sólidos a partir de representações bidimensionais e reciprocamente, usando materiais e instrumentos apropriados.
  • Reconhecer relações entre as ideias matemáticas em geometria e aplicar essas ideias em outros domínios matemáticos e não matemáticos.
  • Resolver problemas que requeiram a aplicação de conhecimentos já aprendidos e apoiem a aprendizagem de novos conhecimentos.
  • Resolver e formular problemas, analisar estratégias variadas de resolução, e apreciar os resultados obtidos.
  • Abstrair e generalizar, e de reconhecer e elaborar raciocínios, discutindo e criticando explicações e justificações de outros.
  • Comunicar utilizando linguagem matemática, oralmente e por escrito, para descrever e justificar raciocínios, procedimentos e conclusões.
  • Analisar o próprio trabalho para identificar progressos, lacunas e dificuldades na sua aprendizagem.
Organizador
ÁLGEBRA
Conhecimentos, Capacidades e Atitudes

Expressões numéricas e propriedades das operações

Resolução de problemas

Raciocínio matemático

Comunicação matemática

  • • Usar as propriedades das operações adição e subtração e a prioridade das operações no cálculo do valor de expressões numéricas respeitando o significado dos parêntesis, com números racionais não negativos.
  • Usar expressões numéricas para representar uma dada situação e compor situações que possam ser representadas por uma expressão numérica.
  • Conceber e aplicar estratégias de resolução de problemas envolvendo expressões numéricas, em contextos matemáticos e não matemáticos.
  • Desenvolver a capacidade de abstração e de generalização e de compreender e construir explicações e justificações matemáticas e raciocínios lógicos, incluindo o recurso a exemplos e contraexemplos.
  • Exprimir oralmente e por escrito ideias matemáticas, com precisão e rigor, e explicar e justificar raciocínios, procedimentos e conclusões, recorrendo ao vocabulário e linguagem próprios da matemática (convenções, notações, terminologia e simbologia).
  • Desenvolver interesse pela Matemática e valorizar o seu papel no desenvolvimento das outras ciências e domínios da atividade humana e social.
  • Desenvolver confiança nas suas capacidades e conhecimentos matemáticos, e a capacidade de analisar o próprio trabalho e regular a sua aprendizagem.
  • Desenvolver persistência, autonomia e à vontade em lidar com situações que envolvam a Matemática no seu percurso escolar e na vida em sociedade.

 

Ações estratégicas de ensino orientadas para o perfil dos alunos
  • Explorar, analisar e interpretar situações de contextos variados que favoreçam e apoiem uma aprendizagem matemática com sentido (dos conceitos, propriedades, regras e procedimentos matemáticos).
  • Realizar tarefas de natureza diversificada (projetos, explorações, investigações, resolução de problemas, exercícios, jogos).
  • Utilizar materiais manipuláveis e instrumentos variados, incluindo os de tecnologia digital, nomeadamente aplicações interactivas, programas computacionais específicos e calculadora, na resolução de problemas e em outras tarefas de aprendizagem.
  • Relacionar linguagem simbólica e linguagem natural.
  • Realizar cálculo mental usando as propriedades das operações e a relações entre números.
  • Resolver problemas que requeiram a aplicação de conhecimentos já aprendidos e apoiem a aprendizagem de novos conhecimentos.
  • Resolver e formular problemas, analisar estratégias variadas de resolução e apreciar os resultados obtidos.
  • Abstrair e generalizar, e de elaborar raciocínios, discutindo e criticando explicações e justificações de outros.
  • Reconhecer relações entre as ideias matemáticas no campo algébrico e aplicar essas ideias em outros domínios matemáticos e não matemáticos.
  • Comunicar utilizando a linguagem matemática, oralmente e por escrito, para descrever e justificar, raciocínios, procedimentos e conclusões.
  • Analisar o próprio trabalho para identificar progressos, lacunas e dificuldades na sua aprendizagem.
Organizador
ORGANIZAÇÃO E TRATAMENTO DE DADOS
Conhecimentos, Capacidades e Atitudes

Representação e interpretação de dados

Resolução de problemas

Raciocínio matemático

Comunicação matemática

  • Distinguir os vários tipos de variáveis: qualitativa e quantitativa.
  • Recolher, organizar e representar dados recorrendo a tabelas de frequência absoluta e relativa, diagramas de caule e folhas e gráficos de barras e interpretar a informação representada.
  • Resolver problemas envolvendo a organização e tratamento de dados em contextos familiares variados e utilizar medidas estatística (moda e amplitude) para os interpretar e tomar decisões.
  • Exprimir, oralmente e por escrito, raciocínios, procedimentos e conclusões, utilizando linguagem própria da estatística, baseando-se nos dados recolhidos e tratados.
  • Desenvolver confiança nas suas capacidades e conhecimentos matemáticos, e a capacidade de analisar o próprio trabalho e regular a sua aprendizagem.
  • Desenvolver persistência, autonomia em lidar com situações que envolvam a Matemática no seu percurso escolar e na vida em sociedade.
  • Desenvolver interesse pela Matemática e valorizar o seu papel no desenvolvimento das outras ciências e domínios da atividade humana e social.

 

Ações estratégicas de ensino orientadas para o perfil dos alunos
  • Explorar, analisar e interpretar situações de contextos variados que favoreçam e apoiem uma aprendizagem matemática com sentido (dos conceitos, propriedades, regras e procedimentos matemáticos).
  • Realizar tarefas de natureza diversificada (projetos, explorações, investigações, resolução de problemas, exercícios, jogos).
  • Formular questões em contextos familiares variados e desenvolver investigações estatísticas, recorrendo a bases de dados diversas, organizando e representando dados e interpretando resultados.
  • Utilizar aplicações interativas, programas computacionais específicos e calculadora na organização e tratamento de dados.
  • Resolver problemas em que se recorra a medidas estatísticas para interpretar e comparar resultados, analisar estratégias variadas de resolução, e apreciar os resultados obtidos.
  • Interpretar e criticar informação estatística divulgada pelos media.
  • Comunicar, oralmente e por escrito, para descrever e explicar representações dos dados e as interpretações realizadas, raciocínios, procedimentos e conclusões, discutindo argumentos e criticando argumentos dos outros.
  • Analisar o próprio trabalho para identificar progressos, lacunas e dificuldades na sua aprendizagem.